Numerical simulation of pulsating turbulent channel flow
نویسندگان
چکیده
Direct and large-eddy simulations of the Navier–Stokes equations are used to study the pulsating flow in a channel. The cases examined span a wide range of frequencies of the driving pressure gradient, and encompass different physical behaviors, from the quasi-Stokes flow observed at high frequencies, to a quasisteady behavior at the lowest ones. The validity of the dynamic Smagorinsky model to study this kind of unsteady flow is established by a posteriori comparison with direct simulations and experimental data. It is shown that the fluctuations generated in the near-wall region by the unsteady pressure gradient do not propagate beyond a certain distance l t from the wall, which can be estimated quite accurately by a simple eddy viscosity argument. No substantial departure from the Stokes regime at very high frequency ~v as high as 0.1! is observed. The time-dependent characteristics of the flow are examined in detail, as well as the topology of the coherent structures. © 2001 American Institute of Physics. @DOI: 10.1063/1.1359766#
منابع مشابه
Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel
In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...
متن کاملInvestigation of Laminar Pulsating Nanofluid Flow and Heat Transfer in a Rectangular Channel
In this study, two-dimensional pulsating unsteady flow of nanofluid through a rectangular channel with isothermal walls is investigated numerically. The set of resultant algebraic equations is solved simultaneously using SIMPLE algorithm to obtain the velocity and pressure distribution within the channel. The effects of several parameters, such as volume fraction of different nanoparticles, Rey...
متن کاملHeat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface
In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...
متن کاملNumerical Study of Reynolds Number Effects on Flow over a Wall-Mounted Cube in a Channel Using LES
Turbulent flow over wall-mounted cube in a channel was investigated numerically using Large Eddy Simulation. The Selective Structure Function model was used to determine eddy viscosity that appeared in the subgrid scale stress terms in momentum equations. Studies were carried out for the flows with Reynolds number ranging from 1000 to 40000. To evaluate the computational results, data was compa...
متن کامل3D Numerical Simulation of the Separated Turbulent Shallow Flow around a Single Side Obstacle
In this paper, the performance of Reynolds Averaged Navier Stokes (RANS) simulations was evaluated to predict the flow structure developed by the presence of a sidewall obstruction in a uniform open-channel shallow flow. The study of these flow structures is important because they present in several real world configurations, such as groynes in rivers, where the erosion processes, mass transpor...
متن کاملTurbulent oscillating channel flow subjected to a free-surface stress
The channel flow subjected to a wind stress at the free surface and an oscillating pressure gradient is investigated using large-eddy simulations. The orientation of the surface stress is parallel with the oscillating pressure gradient and a purely pulsating mean flow develops. The Reynolds number is typically Re!=10 and the Keulegan–Carpenter number—the ratio between the oscillation period and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001